

付録 2-2

署名用トークンインターフェース仕様

PKCS#11 API Experiment Profile

- CONTENT -

1 INTRODUCTION .. 1

1.1 OBJECTIVE.. 1
1.2 OVERVIEW .. 1
1.3 REVIEW .. 1
1.4 REGISTERED TRADEMARK ... 1
1.5 TERM DEFINITION... 1

2 THE SPECIFICATION OF SIGNING AND VERIFICATION......................... 2

2.1 APPLICATION MODEL .. 2
2.2 PKCS#11 FUNCTIONS .. 3
2.2.1 PKCS#11 Version... 3
2.2.2 General Functions ... 3
2.2.3 Management Functions... 7
2.2.4 Signing Functions...11
2.2.5 Encryption Functions (Optional) .. 14
2.3 WRAPPER FUNCTIONS... 16
2.3.1 PKCS#11 Functions Sequences... 16
2.3.2 PKCS#11 Return Codes... 18
2.3.3 PKCS#11 library loading... 20
2.4 APPLICATION INTERFACE .. 21
2.5 PKCS#11 OTHER FACTORS... 22
2.5.1 Algorithm ... 22
2.5.2 Key Length... 22
2.5.3 Signing Mechanism ... 22

- FIGURE CONTENT -

Figure 2-1 Application Model .. 3
Figure 2-2 File Name Resolving.. 20
Figure 2-3 PKCS#11 Function Call from Application.................................... 21

- TABLE CONTENT -

Table 2-1 Return Code List ... 18

1 Introduction
1.1 Objective
This profile aims to be able to use the function of the signing and the

verification together like using the product in each country when each country of
the sphere of Asia uses one application service and to become it.

1.2 Overview
The specification to use each country's library based on PKCS#11 that is the

international standard specification that U.S. RSA Laboratories settled on, and
to use the function of the signing and the verification from a common application
service together is settled on. The specification of the interface between the
application and the PKCS#11 library, the function of PKCS#11, the execution
sequence of the function, and the return code is settled on.

1.3 Review
This profile is corrected by the discussion based on trend and the situation of

Asia.

1.4 Registered trademark
The company name, the product name and the brand name in this profile are

the trademark of each company or the registered trademark.

1.5 Term definition

 PKCS#11 (Public Key Cryptograph Standard)

PKCS(Public Key Cryptograph Standard) is a standard concerning the public key
cryptosystem technology that U.S. RSA Laboratories advocates. As for PKCS#11,
it is said "Cryptographic Token Interface Standard", and is provided for API to
operate the certificate call and store, signing and verifying using the private key
and the public key, etc. to the token.

 token
The token indicates the generic name of the device that can be the carrying that
can store the private key and the certificate for the owner identification. IC card
is concretely given.

 RSA encryption algorithm
Public key cryptosystem algorithm that is invented by Mr. Ron Rivest, Mr. Adi

 - 1 -

Shamir, and Mr. Leonard Adleman in 1977, and catches inventor's initial and was
named. The factorization on prime numbers of a big number is assumed to be
difficult of safety. It corresponds to a wide usage like not only encryption,
decryption but also the signature, the verification, and the key distribution, etc.

 SHA-1
This is a correction version of Secure Hash Algorithm defined in FIPS 180. And
this is a hush algorithm used when the e-signature is chiefly done

 public key
It is the key that pairs with the private key in the public key cryptosystem. It is
open to the public as the certificate signed by trusted CA.
(Related item : private key)

 private key
It is the key that pairs with the public key in the public key cryptosystem. It is
necessary to be managed by the end-entity strictly.
(Related item : public key)

2 The specification of Signing and verification
In this chapter, the specification of this profile is explained.

2.1 Application model
The application model assumed in this profile is shown at ”

”. Here, Web Server is assumed to be the one to provide the
application service, and Web Server is assumed to be used as common service in
each country.

Figure 2-1
Application Model

Otherwise, the client is assumed to be acquired the private key and public key.

 - 2 -

Web Server

Client (country A) Client (country B)

Wrapper
(Java, ActiveX)

PKCS#11 library
(only country A)

Wrapper
(Java, ActiveX)

PKCS#11 library
(only country B)

Token
(only country A)

Token
(only country B)

Application (Java, ActiveX)

Wrapper
(Java, ActiveX)

Download
Application
Transaction

Application
Transaction

Figure 2-1 Application Model

In this model, at first, Web Server is providing an application service. In the
client, it acquires the private key and public key under the PKCS#11 library
management. The keys and PKCS#11 library is installed beforehand.

In the status that the client is accessing to Web Server, when the client
processes a signing or verifying, the “wrapper” is downloaded from Web Server to
the client, and the communication between the application and PKCS#11 library
is enabled. The wrapper is Java applet or ActiveX.

The PKCS#11 library and token is used the one that it is possible to use it in
each country. But the point of Wrapper that the application service provider
offers it as a common module is important.

2.2 PKCS#11 Functions
In this term, it explains the functions that are used in all PKCS#11 functions.

2.2.1 PKCS#11 Version
In this profile, version 2.01 is required.

2.2.2 General Functions
In “General Functions”, it defines the functions used as a whole together. The

functions in this group are shown as follows.

 - 3 -

(1) C_Initialize
a) Format

CK_RV C_Initialize(CK_VOID_PTR pReserved);

b) Process
It initializes a PKCS#11 library.

c) Parameter

Parameter Explanation
pReserved NULL_PTR is specified.

(2) C_GetSlotList
a) Format

CK_RV C_GetSlotList(CK_BBOOL tokenPresent,
 CK_SLOT_ID_PTR pSlotList,
 CK_ULONG_PTR pulCount);

b) Process

The slot ID list or the number of slot is acquired.

c) Parameter

Parameter Explanation
tokenPresent The kind of slot is specified.

 TRUE : only the slot existing token
 FALSE : all slot

pSlotList The area pointer that stores the slot ID
lists in is specified.

pulCount The area pointer that stores the number of
slot.

(3) C_GetTokenInfo
a) Format

CK_RV C_GetTokenInfo(CK_SLOT_ID slotID,
 CK_TOKEN_INFO_PTR pInfo);

 - 4 -

b) Process

It acquires the token information of the specified slot.

c) Parameter

Parameter Explanation
slotID The slot ID that corresponds to the token is

specified.
pInfo The pointer of ”CK_TOKEN_INFO”

structure that stors a token information is
specified.

(4) C_OpenSession
a) Format

CK_RV C_OpenSession(CK_SLOT_ID slotID,
 CK_FLAGS flags,
 CK_VOID_PTR pApplication,
 CK_NOTIFY Notify,
 CK_SESSION_HANDLE_PTR phSession);

b) Process

It opens the session between the process and token. And it acquires the
session handle to identify the opened session.

c) Parameter

Parameter Explanation
slotID The slot ID that corresponds to the token is

specified.
Flags The session type is specified.
pApplication NULL_PTR is specified.
Notify NULL_PTR is specified.
phSession The pointer of the area that store the

session handle to identify the opened
session.

 - 5 -

(5) C_Login
a) Format

CK_RV C_Login(CK_SESSION_HANDLE hSession,
 CK_USER_TYPE userType,
 CK_CHAR_PTR pPin,
 CK_ULONG ulPinLen);

b) Process

It logs-in to the token.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
userType User type is specified.

CKU_SO or CKU_USER
pPin The pointer to the PIN is specified.
ulPinLen The length of PIN data is specified.

(6) C_Logout
a) Format

CK_RV C_Logout(CK_SESSION_HANDLE hSession);

b) Process

It logs-out the user from the token.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.

(7) C_CloseSession
a) Format

CK_RV C_CloseSession(CK_SESSION_HANDLE hSession);

 - 6 -

b) Process

The session is closed between token and process.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.

(8) C_Finalize
a) Format

CK_RV C_Finalize(CK_VOID_PTR pReserved);

b) Process

The end process of PKCS#11 library is done.

c) Parameter

Parameter Explanation
pReserved NULL_PTR is specified.

2.2.3 Management Functions
In “Management Functions”, it defines the functions that manage a private key,

a public key and a token. The functions in this group are shown as follows.

(1) C_FindObjectsInit
a) Format

CK_RV C_FindObjectsInit(CK_SESSION_HANDLE hSession,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount);

b) Process

The environment to search the objects that is same as the attribute specified
in the template is initialized.

 - 7 -

c) Parameter
Parameter Explanation

hSession The session handle that is acquired in
C_OpenSession is specified.

pTemplate The pointer of the template that stores a
serche conditions is specified.

ulCount The number of the attribute that specified
in the template is specified.

(2) C_FindObjects
a) Format

CK_RV C_FindObjects(CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE_PTR phObject,
 CK_ULONG ulMaxObjectCount,
 CK_ULONG_PTR pulObjectCount);

b) Process

The token objects and the session objects are searched by the condition set in
C_FindObjectsInit function.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
phObject The pointer of the area that is stored the

object handle is specified.
ulMaxObjectCount The max number of returning object handle

is specified.
pulObjectCount The pointer of the area that sotres the

number of the object handle is specified.

(3) C_FindObjectsFinal
a) Format

CK_RV C_FindObjectsFinal(CK_SESSION_HANDLE hSession);

 - 8 -

b) Process

The searching objects are finished.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.

(4) C_GetAttributeValue
a) Format

CK_RV C_GetAttributeValue(CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount);

b) Process

The object attribute is acquired. Or the length of the attribute data is
acquired.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
hObject The object handle is specified.
pTemplate The pointer of the template to receive the

attribute is specified.
ulCount The number of the template attribute is

specified.

(5) C_CreateObject
a) Format

CK_RV C_CreateObject(CK_SESSION_HANDLE hSession,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 CK_OBJECT_HANDLE_PTR phObject);

 - 9 -

b) Process

The object is added newly.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pTemplate The pointer of the template set the object

attribute is specified.
ulCount The number of the attribute set in the

template is specified.
phObject The pointer of the area stored the new

object handle is specified.

(6) C_DestroyObject
a) Format

CK_RV C_DestroyObject(CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject);

b) Process

The object is annulled.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
hObject The object handle is specified.

(7) C_GenerateKey (Optional)
a) Format

CK_RV C_GenerateKey(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 CK_OBJECT_HANDLE_PTR phKey);

 - 10 -

b) Process

The common key is generated.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pMechanism The pointer of generated common key

mechanism is specified.
pTemplate The pointer of generated common key

attribute template is specified.
ulCount The number of setting attribute in the

template is specified.
phKey The area pointer receiving the common key

object handle is specified.

2.2.4 Signing Functions
In “Signing Functions”, it defines the signing functions and virification

functions. The functions in this group is shown as follows.

(1) C_SignInit
a) Format

CK_RV C_SignInit(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey);

b) Process

The signing process is initialized.

 - 11 -

c) Parameter
Parameter Explanation

hSession The session handle that is acquired in
C_OpenSession is specified.

pMechanism The pointer of signing mechanism is
specified.

hKey The object handle of the key is specified.

(2) C_Sign
a) Format

CK_RV C_Sign(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,

 CK_ULONG_PTR pulSignatureLen);

b) Process

The single part data is signed.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pData The pointer of the data area is specified.
ulDataLen The data length is specified.
pSignature The pointer of receiving a signed data area

is specified.
pulSignatureLen The pointer of receiving the signature

length area is specified.

(3) C_VerifyInit
a) Format

CK_RV C_VerifyInit(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey);

 - 12 -

b) Process

The verification process is initialized.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pMechanism The pointer of verification mechanism is

specified.
hKey The object handle of the key is specified.

(4) C_Verify
a) Format

CK_RV C_Verify(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,
 CK_ULONG ulSignatureLen);

b) Process

The single part data is verified.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pData The pointer of the data is specified.
ulDataLen The data length is specified.
pSignature The pointer of signature is specified.
ulSignatureLen The length of signature is specified.

 - 13 -

2.2.5 Encryption Functions (Optional)
In “Encryption Functions”, it defines the encryption functions and decryption

functions. The functions in this group are shown as follows.
The functions in this group are optional.

(1) C_EncryptInit
a) Format

CK_RV C_EncryptInit(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey);

b) Process

The encryption process is initialized.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pMechanism The pointer of encryption mechanism is

specified.
hKey The object handle of the key is specified.

(2) C_Encrypt
a) Format

CK_RV C_Encrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG_PTR pulEncryptedDataLen);

b) Process

The single part data is encrypted.

 - 14 -

c) Parameter
Parameter Explanation

hSession The session handle that is acquired in
C_OpenSession is specified.

pData The pointer of normal data is specified.
ulDataLen The length of normal data is specified.
pEncryptedData The area pointer of receiving encrypted

data is specified.
pulEncryptedDataLen The area pointer of receiving encrypted

data length is specified.

(3) C_DecryptInit
a) Format

CK_RV C_DecryptInit(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey);

b) Process

The decryption process is initialized.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pMechanism The pointer of verification mechanism is

specified.
hKey The object handle of the key is specified.

(4) C_Decrypt
a) Format

CK_RV C_Decrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pDecryptedData,
 CK_ULONG_PTR pulDecryptedDataLen);

 - 15 -

b) Process

The single part data is decrypted.

c) Parameter

Parameter Explanation
hSession The session handle that is acquired in

C_OpenSession is specified.
pData The pointer of encrypted data is specified.
ulDataLen The length of encrypted data is specified.
pDecryptedData The area pointer of receiving decrypted

data is specified.
pulDecryptedDataLen The pointer of receiving decrypted data

length is specified.

2.3 Wrapper Functions
In this term, the method that the wrapper is implemented the functions shown

at “2.2 PKCS#11 Functions” is explained.
The application developer may mount the wrapper without doing as an

independent module as one function of the application.

2.3.1 PKCS#11 Functions Sequences
In the wrapper, it starts making the function shown at “2.2 PKCS#11

Functions” a group each processing, and it defines the sequences. In the
application, communication to the PKCS#11 library is enabled by calling these
sequences.

The sequences are shown as follows.

(1) Initialize Sequence

C_Initialize •
•
•
•
•

C_GetSlotList
C_GetTokenInfo
C_OpenSession
C_Login

 - 16 -

(2) Logout Sequence
C_Logout •

•
•

•
•
•
•

•
•

•
•
•

•

•
•

•
•

•
•

C_CloseSession
C_Finalize

(3) Get Certificate Sequence

C_FindObjectsInit
C_FindObjects
C_FindObjectsFinal
C_GetAttributeValue

(4) Sign Sequence

C_SignInit
C_Sign

(5) Verify Sequence

C_CreateObject
C_VerifyInit
C_Verify

(6) Delete Object Sequence

C_DestroyObject

(7) Common Key Generate Sequence (Optional)

C_GenerateKey
C_GetAttributeValue

(8) Encryption Sequence (Optional)

C_EncryptInit
C_Encrypt

(9) Decryption Sequence (Optional)

C_DecryptInit
C_Decrypt

 - 17 -

2.3.2 PKCS#11 Return Codes
About the return codes of each function in the sequences that are shown at

“2.3.1 PKCS#11 Functions Sequences”, the return codes that are contained in
this profile are shown at “ ”. Table 2-1 Return Code List

Table 2-1 Return Code List

The adoption of these return codes is left to the application developer's
judgment.

No. Function Return Code Notes
1 C_GetFunctionList CKR_OK
2 C_Initialize CKR_OK
3 C_Finalize CKR_OK
4 CKR_OK
5

C_GetTokenInfo
CKR_DEVICE_REMOVED

6 C_GetSlotList CKR_OK
7 CKR_OK
8 CKR_DEVICE_REMOVED
9 CKR_TOKEN_NOT_PRESENT

10 CKR_SESSION_HANDLE_INVALID
11

C_OpenSession

CKR_SLOT_ID_INVALID
12 CKR_OK
13

C_CloseSession
CKR_TOKEN_NOT_PRESENT

14 CKR_SESSION_HANDLE_INVALID
15

CKR_DEVICE_REMOVED

16 CKR_OK
17 CKR_DEVICE_REMOVED
18 CKR_TOKEN_NOT_PRESENT
19 CKR_SESSION_HANDLE_INVALID
20 CKR_PIN_INCORRECT
21 CKR_PIN_INVALID
22 CKR_PIN_LEN_RANGE
23 CKR_PIN_LOCKED
24

C_Login

CKR_USER_ALREADY_LOGGED_IN
25 CKR_OK
26 CKR_DEVICE_REMOVED
27 CKR_TOKEN_NOT_PRESENT
28 CKR_SESSION_HANDLE_INVALID
29

C_Logout

CKR_USER_NOT_LOGGED_IN
30 CKR_OK
31 CKR_TOKEN_NOT_PRESENT
32 CKR_SESSION_HANDLE_INVALID
33

C_FindObjectsInit

CKR_DEVICE_REMOVED
34 CKR_OK
35 CKR_TOKEN_NOT_PRESENT
36 CKR_SESSION_HANDLE_INVALID
37

C_FindObjects

CKR_DEVICE_REMOVED
38 CKR_OK
39 CKR_TOKEN_NOT_PRESENT
40

C_FindObjectsFinal

CKR_SESSION_HANDLE_INVALID

 - 18 -

No. Function Return Code Notes
41 CKR_DEVICE_REMOVED
42 CKR_OK
43 CKR_DEVICE_REMOVED
44 CKR_TOKEN_NOT_PRESENT
45 CKR_SESSION_HANDLE_INVALID
46

C_CreateObject

CKR_USER_NOT_LOGGED_IN
47 CKR_OK
48 CKR_TOKEN_NOT_PRESENT
49 CKR_SESSION_HANDLE_INVALID
50

C_DestroyObject

CKR_DEVICE_REMOVED
51 CKR_OK
52 CKR_TOKEN_NOT_PRESENT
53 CKR_SESSION_HANDLE_INVALID
54

C_GetAttributeValue

CKR_DEVICE_REMOVED
55 CKR_OK
56 CKR_TOKEN_NOT_PRESENT
57 CKR_SESSION_HANDLE_INVALID
58 CKR_DEVICE_REMOVED
59

C_SignInit

CKR_USER_NOT_LOGGED_IN (optional)
60 C_Sign CKR_OK
61 CKR_DATA_INVALID
62 CKR_DATA_LEN_RANGE
63 CKR_TOKEN_NOT_PRESENT
64 CKR_SESSION_HANDLE_INVALID
65

CKR_DEVICE_REMOVED
66 CKR_OK
67 CKR_TOKEN_NOT_PRESENT
68 CKR_SESSION_HANDLE_INVALID
69 CKR_DEVICE_REMOVED
70

C_VerifyInit

CKR_USER_NOT_LOGGED_IN
71 CKR_OK
72 CKR_DATA_INVALID
73 CKR_DATA_LEN_RANGE
74 CKR_TOKEN_NOT_PRESENT
75 CKR_SESSION_HANDLE_INVALID
76 CKR_SIGNATURE_INVALID
77 CKR_DEVICE_REMOVED
78

C_Verify

CKR_SIGNATURE_LEN_RANGE
79 CKR_OK
80 CKR_TOKEN_NOT_PRESENT
81 CKR_SESSION_HANDLE_INVALID
82

C_EncryptInit

CKR_DEVICE_REMOVED
83 CKR_OK
84 CKR_TOKEN_NOT_PRESENT
85 CKR_SESSION_HANDLE_INVALID
86

C_Encrypt

CKR_DEVICE_REMOVED
87 CKR_OK
88 CKR_TOKEN_NOT_PRESENT
89 CKR_SESSION_HANDLE_INVALID
90

C_DecryptInit

CKR_DEVICE_REMOVED
91 CKR_OK
92 CKR_TOKEN_NOT_PRESENT
93

C_Decrypt

CKR_SESSION_HANDLE_INVALID

 - 19 -

No. Function Return Code Notes
94 CKR_DEVICE_REMOVED
95 CKR_ENCRYPTED_DATA_LEN_RANGE

2.3.3 PKCS#11 library loading
If the wrapper is used commonly in each country, there is one problem. There is

a difference between the file name of PKCS#11 library used in each country. So,
when the wrapper is downloaded in the client, the wrapper can not know the file
name.
To resolve this problem, the method that the file name is written in initialize

file is adopted. Detail is shown at “Figure 2-2 File Name Resolving”.

Client

Wrapper
(Java, ActiveX)

PKCS#11 library
(only country A)

Token
(only country A)

[Initialize file]
PKCS#11 lib. File name

load

Figure 2-2 File Name Resolving

The specification of this initialize file is as follows.

(1) File Name
The file name is “pkcs11.ini”.

(2) Contents
The contents of “pkcs11.ini” is as follows.

 1 : [PKCS11.Driver.Name]

2 : F3EZscl2.dll

 - 20 -

In the 1st line, it declares that the file name of PKCS#11 library is written in
this.

In the 2nd line, it writes the file name of PKCS#11 library of each country.

(3) Saved place
The saved place of “pkcs11.ini” is at the system folder in Windows installed

drive and folder. Moreover, the file (DLL etc.) that is the realities of PKCS#11
library is saved the folder as same as “pkcs11.ini”.

Example) Windows installed drive : C drive
 Windows installed folder : winnt
 System folder of Windows : system32

 In this case, the place of pkcs11.ini is C:¥winnt¥system32¥.

2.4 Application Interface
When the application calls PKCS#11 functions, concretely, the application calls

the sequences that are defined at “2.3.1 PKCS#11 Functions Sequences” to the
wrapper. Details are shown at “

”.
Figure 2-3 PKCS#11 Function Call from

Application

Figure 2-3 PKCS#11 Function Call from Application

Application

Wrapper

PKCS#11 Library

Initialize Seq.

Logout Seq.

Get Cert Seq.

Sign Seq.

Verify Seq.

Del Obj Seq.

Encrypt Seq. …..

Sequence Call

PKCS#11
Function Call

 - 21 -

 - 22 -

2.5 PKCS#11 Other Factors
In this term, the other factors are explained.

2.5.1 Algorithm
The signing algorithm used in C_Sign function and C_Verify function is RSA

encryption or SHA-1 with RSA encryption.

2.5.2 Key Length
The key length of public key and private key are 1024 bits.

2.5.3 Signing Mechanism
The mechanism specified in C_SignInit function and C_VerifyInit function is

CKM_RSA_PKCS or CKM_SHA1_RSA_PKCS.

	Introduction
	Objective
	Overview
	Review
	Registered trademark
	Term definition

	The specification of Signing and verification
	Application model
	PKCS#11 Functions
	PKCS#11 Version
	General Functions
	C_Initialize
	C_GetSlotList
	C_GetTokenInfo
	C_OpenSession
	C_Login
	C_Logout
	C_CloseSession
	C_Finalize

	Management Functions
	C_FindObjectsInit
	C_FindObjects
	C_FindObjectsFinal
	C_GetAttributeValue
	C_CreateObject
	C_DestroyObject
	C_GenerateKey (Optional)

	Signing Functions
	C_SignInit
	C_Sign
	C_VerifyInit
	C_Verify

	Encryption Functions (Optional)
	C_EncryptInit
	C_Encrypt
	C_DecryptInit
	C_Decrypt

	Wrapper Functions
	PKCS#11 Functions Sequences
	Initialize Sequence
	Logout Sequence
	Get Certificate Sequence
	Sign Sequence
	Verify Sequence
	Delete Object Sequence
	Common Key Generate Sequence (Optional)
	Encryption Sequence (Optional)
	Decryption Sequence (Optional)

	PKCS#11 Return Codes
	PKCS#11 library loading
	File Name
	Contents
	Saved place

	Application Interface
	PKCS#11 Other Factors
	Algorithm
	Key Length
	Signing Mechanism

